Два основания --прямоугольники 6х5 --площадь каждого = 30 см²
задняя стенка --прямоугольник 5х5 --площадь = 25 см²
две боковые "с"-образные стенки --каждая площадью =
=5*4+2*1+2*1 = 24 см²
и "с"-образное углубление --площадь = 5*3+2*5+2*5 = 35 см²
и плюс 2 узкие полосочки над и под углублением = 2*5*1 = 10 см²
Sполной поверхности = 2*30 + 25 + 2*24 + 35 + 10 = 130+48 = 178 см²
------------------------------
можно и чуть иначе:
из полной поверхности "целого" параллелепипеда
Sполн.пов. = Sбок.пов.+2*Sосн. = Н*Росн + 2*30 =
= 5*2*(5+6) + 60 = 110 + 60 = 170 см²
можно вычесть
площади 2 боковых вырезов 2*(2*3) = 12 см²
и добавить
площади "верха и низа углубления" = 2*(2*5) = 20 см²
170 + 20 - 12 = 170 + 8 = 178 см²
Оттава
<span>Географические координаты: 45°19 с. ш. , 75° 40' з. д
</span>Москва , Координаты: 55°45′07″ с. ш. . <span>37°36′56″ в. д.</span>
Решим эту задачу без применения частной формулы для правильного треугольника:Проведем в правильном треугольника АВС к каждой из сторон высоты: AF, BH, CE. Точка пересечения О.
Они будут и высотами и медианами и биссектрисами.
Рассмотри треугольник AFC: он прямоугольный. Угол FAC равен 30 (AF - биссектриса)⇒FC=½АС = ½5√3.
Находим катет AF: √((5√3)²-(½5√3)²) = √(75-75/4) = √(225/4) = 15/2
Исходя из равенства всех треугольников, полученных в результате построения высот треугольниа АВС, точкой пересечения высоты делятся в соотношении 2:1, т. е. АО=⅔AF⇒AO=⅔*(15/2)=5 см. Это и есть радиус.
Площадь S=πr²⇒S=25π
Длина окружности L=2πr⇒L=10π
Частная формула гласит R=(√3/3)*a⇒R=(√3/3)*5√3=15/3=5 (т. е. верно)
Сторона образовавшегося параллелограмма отсекает от данного равностороннего треугольника тоже равносторонний треугольник.
Следовательно, сумма двух смежных сторон параллелограмма равна стороне исходного треугольника, которая равна 18:3=6 см.
Значит периметр параллелограмма равен 12см.
Ответ: P=12 см.