Найдем площадь треугольника АВС по формуле Герона или найдя по Пифагору высоту, опущенную на основание ВС.
а) По Герону. Полупериметр треугольника равен 33:2 = 16,5.
Sabc = √(16,5*6,5*6,5*3,5) = 6,5√57,75.
б) По Пифагору: Hbc = √(10²-6,5²) = √(16,5*3,5). =>
Sabc = (1/2)*13*√57,75 = 6,5√57,75.
Площадь треугольника АВС можно определить так:
Sabc = (1/2)*AB*CH или 6,5√57,75 =5*СН => СН = 1,3*√57,75.
Тогда из прямоугольного треугольника АСН по Пифагору:
АН = √(10² - (1,3*√57,75)²) = √2,4025 = 1,55.
Ответ: АН = 1,55.