Пусть острый угол - х, тогда
2х+56=180
2х=124
х=62
тупой угол равен 56+62=118
Ответ:118
Сумма углов треугольника 180°. =>
В ∆ АВС угол С=180°-(80°+60°)=40°
Сравним стороны данных треугольников, начиная с меньшей.
АВ=4, МК=8
АС=6, МN=12
BC=7, KN=14
Отношение длин сторон этих треугольников <em>1:2</em>.
<em>Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.</em>
Против сходственных сторон лежат равные углы.
Угол <em>М</em> заключён между МK и МN, т.е. между сторонами, пропорциональными АВ и АС меньшего треугольника и лежит против КN. =>
угол М=углу А=80°
Угол <em>К</em> лежит против МN и заключен между КМ и КN, эти стороны пропорциональны ВА и ВС соответственно.
Угол <em>К</em>=углу В=<em>60°</em>
Угол <em>N</em>=углу С=<em>40°</em>
Формулировка теоремы: Во всяком прямоугольном треугольнике площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.
<span>Обозначив длину гипотенузы треугольника через c, а длины катетов через a и b, получаем следующее равенство: </span>
<span>a2 + b2 = c2 </span>
<span>Таким образом, теорема Пифагора устанавливает соотношение, позволяющее определить сторону прямоугольного треугольника по двум другим. </span>
<span>Также верно обратное утверждение (называемое обратной теоремой Пифагора) : </span>
<span>Для всякой тройки положительных чисел a, b и c, такой что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c. </span>
<span>Доказательство </span>
<span>Известно более ста доказательств теоремы Пифагора. Ниже приведено доказательство основанное на теореме существования площади фигуры: </span>
<span>1. Расположим четыре равных прямоугольных треугольника так, как показано на этом рисунке. </span>
<span>2. Четырехугольник со сторонами c является квадратом, так как сумма двух острых углов равна 90°, а развернутый угол — 180°. </span>
<span>3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a + b), а с другой стороны сумме площадей четырех прямоугольных треугольников и внутреннего квадрата. </span>
<span>(a + b)2 = 4·(ab/2) + c2 (с учетом формулы для площади прямоугольного треугольника) </span>
<span>a2 + 2ab + b2 = 2ab + c2 </span>
<span>c2 = a2 + b2 </span>
<span>Что и требовалось доказать.</span>
Угол AB=3, по правилу египетских треугольников
а)
Координаты вектора АВ:
Длина вектора АВ:
б)
Координаты вектора CD:
Cкалярное произведение векторов АВ и СD: