Ответ:
57.
Объяснение:
сторона ромба равна 76+19=95.
Высота образовала прямоугольный треугольник, у которого гипотенуза равна 95. а один из катетов равен 19. Высота ромба равна другому катету этого треугольника.По теореме Пифагора h²=95²-76².
h²=9025-5776=3249;
h=√3249=57.
S=1/2*6*9=27 ( если даны см или что то еще то они в квадрате)
6√2*2=12√2
или задание не в этом?
Ответ:
Пойдем от обратного. Рассмотрим ΔАВС.
Пусть ∠А=60°, тогда ∠В=90-∠А=90-60=30°, тогда гипотенуза АВ=2АС (катет, лежащий против угла в 30° равен половине гипотенузы).
Рассмотрим ΔADC, ∠ACD=30°, значит АС=2AD⇒
АВ=2АС=2*2AD=4AD, но АВ=AD+DB, приравняем обе части:
AD+DB=4AD⇒ DB=4AD-AD=3AD.
Если DB=3AD, то ∠А=60°, что и требовалось доказать.
15
Объяснение:
12.....................................................