Рассмотрим прямоугольный треугольник с гипотенузой 5, одним катетом 4см, второй по т.Пифагора 3см (V25-16=V9=3. Это высота, медиана, бис-са равностороннего треугольника в основании пирамиды (всего 6 тр-ков). Сторона тр-ка из формулы L=1/2 aV3 a=2L/V3=2*3/V3=2V3
Sbok=1/2P*L=1/2*6a*L=3a*L=3*2V3*5=30V3
Решение смотри на фото, ответ : -1
Так как ∠1 = ∠2 и BD⊥AC, BD - биссектриса и высота в треугольнике АВС, значит ΔАВС равнобедренный, ⇒
∠ВАС = ВСА.
∠ВАС = ∠САЕ по условию, значит
∠ВСА = ∠САЕ, а эти углы - внутренние накрест лежащие при пересечении прямых ВС и АЕ секущей АС, ⇒ВС║АЕ.