1) Площадь сектора прямо пропорциональна величине угла, поэтому искомый угол х меньше 360 град. во столько же раз, во сколько 15п см^2 меньше 36п см^2 (15/36), т.е. х=150
2) Пусть все рёбра по а, тогда площадь основания
.
Высота тетраэдра H, высота боковой грани h и отрезок, соединяющий основания этих высот m (он равен трети медианы основания, т.к. высота тетраэдра падает в центр треугольника) связаны теоремой Пифагора:
m=h/3, т.к. все треугольники равны.
как высота правильного треугольника.
;
Объём
Всего рёбер 6, значит
Предположим, что треугольник прямоугольный. Проверим. БОльшая сторона это гипотенуза, у нас 20 см.
Квадрат гипотенузы равен сумме квадратов катетов:
12^2 + 16^2 = 144 + 256 = 400 = 20^2
Так как прямоугольник треугольный, то его площадь равна половине произведения длин его катетов.
Получаем:
12 * 16 / 2 = 96.
Ответ: площадь треугольника со сторонами 20см, 16см и 12см равна 96 квадратных сантиметра.
Центр вписанной окружности - точка пересечения биссектрис, следовательно АО - биссектриса <A=60. В прямоугольном треугольнике HOA, катет против угла в 30 градусов равен половине гипотенузе, следовательно АО=6 см. По теореме Пифагора:
<B=90-<A=30
В прямоугольном треугольнике ABC, катет против угла в 30 градусов равен половине гипотенузе, следовательно АB=
см. По теореме Пифагора:
Подставляем и считаем
ГОЛОВА НЕ РАБОТАЕТ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
AO=CO;DO=BO - по условию,<AOB=<COD - как вертикальные. Чистый первый признак равенства треугольников )