Х- 1 сторона
Х*42/100=1,42Х - 2 сторона
Х*1,42Х=568
Х²=400
Х=20 - 1 сторона
20*1,42=28,4 -2 сторона
Из треугольника СDE по теореме синусов, имеем
<span>У задачи <u>два</u> варианта решения, соответственно, есть два варианта ответов. </span>
<span>Так как в условии не указано, пересекаются ли биссектрисы, </span>
<u>Вариант 1)</u>
<span>Биссектрисы <em>не</em> пересекаются. По условию ВК=КF=FC </span>
<span>Угол ВКА=углу КАD - накрестлежащие. </span>
<span>Угол КАD=КАВ по условию. </span>⇒
Углы при основании АК треугольника АВК равны, ∆ АВК равнобедренный, <em>АВ=ВК</em>. Аналогично доказывается <em>СD=CF.</em>
Примем <em>1/3 ВС=а</em>
Тогда АВ=CD=a, BC=AD=3a
P=8a
8a=88 см
a=11 см ⇒
AB=CD=11см
BC=AD=33 см
<u>Вариант 2)</u>
<span>Биссектрисы <em>пересекаются</em>. По условию ВF=FK=KC</span>
<span>В треугольнике АВК угол ВКА=углу КАD – накрестлежащие. </span>
<span>Угол КАD=КАВ по условию. Углы при основании АК треугольника АВК равны,</span>⇒<span> </span>
<span>∆ АВК равнобедренный, АВ=ВК. Аналогично доказывается СD=CF. </span>
Пусть 1/3 ВС=а
Тогда АВ=СD=2a, BC=AD=3a
P=AB+BC+CD+DA=10a
10а=88
а=8,8 см⇒
АВ=CD=17,6 см
<span>BC=AD=26,4</span>
Ответ: вершина малого квадрата делит сторону большего на отрезки, длиною 5 см и 12 см.
Объяснение:
1. Рассмотрим ΔKNA и ΔKBL
1) ∠1 = ∠2
2) ∠KBL = ∠KAN = 90°
3) KN = KL
Следовательно, ΔKNA = ΔKBL по гипотенузе и острому углу
2. Из равентсва следует, что BK = AN, тогда
AB = AK + BK = AK + BK = 17 см
3. Пусть AN = x см, тогда AK = 17 - x см. Составим уравнение, используя теорему Пифагора в ΔKNA:
KN² = AK² + AN²
13² = (17 - x)² + x²
169 = 289 - 34x + x² + x²
2x² - 34x + 120 = 0
x² - 17x + 60 = 0
√D = √(289 - 240) = √49 = 7
x₁ = (17-7)/2 = 5 см
x₂ = (17+7)/2 = 12 см
AN = 5 см ⇒ AK = 17 - 5 = 12 см
или
AN = 12 см ⇒ AK = 5 см