Отношение площади основания к площади боковой поверхности равно косинусу угла наклона боковых граней (все грани равнонаклонены). Поэтому угол между апофемой и радиусом r вписанной в шестиугольник окружности равен 60 градусов. Поэтому апофема в 2 раза больше этого радиуса. А высота пирамиды равна H = r*tg(60).
Далее, сторона шестиугольника a (и радиус описанной окружности R заодно) равна
a = R = r/sin(60).
Обозначим угол наклона бокового ребра к основанию Ф. Тогда H/R = tg(Ф) = tg(60)*sin(60) = 3/2;
а нам надо вычислить 1/cos(Ф).
Легко сосчитать, что это корень(13)/2.
как считать? а вот проще всего так- берем прмоугольный треугольник с катетами 2 и 3, тогда гипотенуза корень(13), и 1/cos(Ф) = корень(13)/2;