В первом только рисунок видать.
Теорема собственно: средняя линия трапеции параллельна её основаниям, а длина её равна полусумме длин этих оснований.
Доказательство. Дана трапеция АВСD и средняя линия КМ (cм.рис.). Через точки В и М проводим прямую, а сторону AD продолжаем через точку D до пересечения с ВМ. Очевидно, что треугольники ВСМ и МРD равны по стороне и двум углам (СМ = МD, ∠ВСМ = ∠МDР — накрест-лежащие, ∠ВМС = ∠DМР - вертикальные), поэтому ВМ = МР или точка М - середина ВР.
КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР, что записывается как
КМ = 1\2 AP = 1\2 (AD + DP) = 1\2 (AD + BC), ч.т.д.
Сумма вертикальных углов вдвое меньше смежного с ними угла. Найти эти вертикальные углы.
Пусть каждый из этих вертикальных углов равен х, а смежный сними угол - у.
2х=у/2 ⇒ у=4х.
х+у=180,
х+4х=180,
5х=180,
х=36° - это ответ.