1) для тр. АВС по т. Пифагора АС^2=АВ^2-ВС^2=13^2-5^2=144, АС=12(см).
2) АD=BD=x, DC=12-х.
Для тр. DCB по т. Пифагора
DС^2+BC^2=BD^2,
(12-x)^2+5^2=x^2,
144-24x+x^2+25=x^2,
24x=169,
x=169/24=7 1/24(см)-BD
Ответ: 7 1/24
Семь целых одна двадцать четвёртая.
1) Продлим ребра куба DD1 и DС и через точки N и Р проведем прямую NP до пересечения с продолжениями ребер в точках D2 и C2.
Через точки D2 и М проведем прямую до пересечения с продолжением ребра DA в точке А2.
Соединим полученные точки А2 и С2.
Получили треугольник А2D2С2, вершины которого принадлежат плоскости сечения и плоскостям, включающим в себя грани куба АА1D1D, DD1C1C и ABCD. Отметим точки пересечения сторон треугольника А2D2C2 и ребер А1D1, ВС и АВ буквами Е, F и G соответственно.
Полученная фигура МENPFG - искомое сечение.
2) Продлим ребра куба ВС и ВВ1 и через точки N и Р проведем прямую NP до пересечения с продолжениями ребер в точках С2 и В2.
Через точки В2 и М проведем прямую до пересечения с продолжением ребра ВA в точке А2.
Соединим полученные точки А2 и С2.
Получили треугольник А2В2С2, вершины которого принадлежат плоскости сечения и плоскостям, включающим в себя грани куба АА1В1В, ВВ1C1C и ABCD. Отметим точки пересечения сторон треугольника А2D2C2 и ребер DC, AD и АA1 буквами Е, F и G соответственно.
Полученная фигура МNPEFG - искомое сечение.
Сторона квадрата=периметр/4=48/4=12, радиус описанной окружности=сторона*корень2/2=12*корень2/2=6*корень2, сторона треугольника=радиус описанной*корень3=6*корень2*корень3=6*корень6
По теореме Пифагора, находим 3 сторону, 25^2=24^2+x^2, где х- это 3 сторона, от сюда узнаём, что х = 7, по формуле Площади треугольника, (Высота*Длину)/2, в нашем случае (Катет*Катет)/2, то есть (24*7)/2=84, надеюсь помог))
Угол В = 90 - угол А (62) = 28
угол АСН = угол В=28
<span>угол НСВ = угол А=62</span>