В основе правильной четырехугольной пирамиды лежит квадрат. А угол скорее всего - это линейный угол двугранног угла между плоскостью боковой грани ы плоскостью основы.Высота опущена в центр квадрата. Половина основания пирамиды - один из катетов треугольника, второй - высота, а гипотенуза - это высота, проведенная по боковой поверхности пирамиды.
Один катет = Половине основания пирамиды =6/2=3
Гипотенуза = Половине основания пирамиды /косинус угла = 3 : 1/корень 3 = 3 корень 3
Второй катет = высота = Корень (Гипотенуза в квадрате - Половине основания пирамиды в квадрате) = корень ((3 корень 3) в квадрате - 3 в квадрате) = корень (9 х 3 - 9)= 3 корень2
Найдем с как разность векторов:
c = 2·a - 4·b = {2·ax - 4·bx; 2·ay - 4·by; 2·az - 4·bz} = {2·2 - 4·(-4); 2·(-5) - 4·3; 2·(-4) - 4·(-3)} = {4 - (-16); -10 - 12; -8 - (-12)} = {20; -22; 4}
Найдем d как разность векторов:
d = a - 2·b = {ax - 2·bx; ay - 2·by; az - 2·bz} = {2 - 2·(-4); (-5) - 2·3; (-4) - 2·(-3)} = {2 - (-8); -5 - 6; -4 - (-6)} = {10; -11; 2}
условие коллинеарности <span>ax/</span><span><span>bx </span>= </span><span>ay/</span><span><span>by </span>= </span><span>az/</span><span>bz = </span>λ
подставляем:
20/10 = -22/(-11) = 4/2 = 2
<span>Ответ: </span><span>векторы с и d коллинеарные.
2. Т</span>.к. диагонали параллелограмма пересекаются и точкой пересечения О делятся пополам, то значит точка O - середина отрезка AC.
Найдем ее координаты по формулам координат середины отрезка:
xO = (xA + xC) : 2 = (1 + 3) : 2 = 4 : 2 = 2
yO = (yA + yC) : 2 = (6 − 1) : 2 = 5 : 2 = 2.5
zO = (zA + zC) : 2 = (− 3 + 1) : 2 = − 2 : 2 = − 1
Также точка O - середина отрезка BD, поэтому
xO = (xB + xD) : 2, откуда xD = 2xO − xB.
yO = (yB + yD) : 2, откуда yD = 2yO − yB,
zO = (zB + zD) : 2, откуда zD = 2zO − zB.
Вычисляем:
xD = 2xO − xB = 2 · 2 − (− 5) = 9
yD = 2yO − yB = 2 · 2.5 − 3 = 2
zD = 2zO − zB = 2 · (− 1) − (− 5) = 3
Ответ: D (9; 2; 3).
Пускай х- первый угол, тогда (х+18) - второй. Третий и четвертый будут равны первому и второму соответственно, так как первый с третьим, и второй с четвертым будут вертикальными углами. Сумма всех четырех углов равна 360°.
2(х+х+18)=360
2х+18=180
2х=162
х=81°
81+18=99°
ответ: 81°, 99°, 81°, 99°.
угол А равен 45 поэтому если из точки В опустить высоту то получившийся прямоугольный треугольник будет равнобедренным поэтому АД=26
площадь будет равна
(13+26)*13:2=253.5