1. а) m {1;2} б) n {8;-12} в) k {1;-5} г) Написано как-то неправильно, но, если я правильно понимаю, то там должно быть p=-4a-3b, в таком случае вектор p имеет координаты {-5;-3}
Над остальными надо думать:)
Центр вписанной окружности - точка пересечения биссектрис, следовательно АО - биссектриса <A=60. В прямоугольном треугольнике HOA, катет против угла в 30 градусов равен половине гипотенузе, следовательно АО=6 см. По теореме Пифагора:
<B=90-<A=30
В прямоугольном треугольнике ABC, катет против угла в 30 градусов равен половине гипотенузе, следовательно АB=
см. По теореме Пифагора:
Подставляем и считаем
Я как раз 7 класс)
<span>Пусть в треугольник ABC равен треугольнику A1B1C1, и проведены биссектрисы AD и A1D1. Тогда углы DAB и D1A1B1 равны, кроме того, AB=A1B1, угол B равен углу B1. Значит, треугольники ABD и A1B1D1 равны по стороне и двум прилежащим к ней углам, тогда и AD=A1D1.</span>
Если внимательно помотреть на отрезки, на которые делит стороны треугольника вписанная окружность, то видно, что полупериметр равен
p = c + r;
где с - гипотенуза.
При этом c = 2R;
Отсюда p = 2*5+2 = 12;
На самом деле сразу ясно, что это "египетский" треугольник со сторонами (6,8,10)
Для него r = (6 + 8 - 10)/2 = 2, и R = 10/2 = 5; p = (6 + 8 + 10)/2 = 12;
Мне кажетьса что (a-c) меньше чем (a+c)-a так что (a+c)-a больше(a-c)