SM=8 см, ∠SMO=45°.
В прямоугольном тр-ке SMO острый угол равен 45°, значит он равнобедренный. SO=MO=SM/√2=8/√2=4√2 см.
В квадрате АВСД ВС=2·МО=8√2 см.
Объём пирамиды: V=Sh/3=ВС²·SO/3=64·2·4√2/3=512√2/3 см² - это ответ.
1). ΔPST, ΔMKN -равнобедренные, ∠MPS =∠KNM по условию,
значит ∠SPT =∠STP =∠KNM =∠KMN.
∠KMN и ∠STP накрест лежащие при прямых ST, MK и секущей РN⇒
ST║MK.
∠SPT =∠MNK -они накрест лежащие при прямых KN, PS и секущей РN⇒
KN ║ PS.
2). Внешние углы Е и F по условию равны, это соответственные углы при прямых DF, BE и секущей AF⇒ BE║ DF.
ΔABE=ΔCDF по первому признаку равенства треугольников,
так как BE =DF, AE =CF -по условию, ∠AEB=∠CFD. В равных треугольниках против равных сторон лежат равные углы, поэтому
∠BAE =∠DCF, это соответственные углы при прямых BA, DC и
секущей AF⇒ BA ║DC
Если 4-угольник описан, то суммы противоположных сторон равны
Р=27+27=54
это будет окружность,задается уравнением
x^2+y^2=2,25
<span>Угол при вершине равнобедренного треугольника, противолежащей основанию, равен 120°</span>
<span>тогда углы при основании <Вп=(180-120) /2 = 30</span>
<span>углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)</span>
<span>на эту же хорду/сторону опирается центральный угол <Цн</span>
<span>центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град</span>
<span><span>из центра описанной <span>окружности боковые стороны видны под углом 60 град</span></span></span>
<span>основание видно под углом 2*<Цн =2*60=120 град </span>