В условии опечатка, на самом деле нужно доказать, что
xy/z²+ yz/x²+ zx/y²=3. Если привести это к общему знаменателю, то будет
(xy)³+(yz)³+(xz)³=3x²y²z².<span>
Условие </span><span>1/x+1/y+1/z=0 равносильно </span>yz+xz+xy=0.
Поэтому, если обозначить xy=a, yz=b, xz=c, то задача сводится к тому, чтобы доказать, что из a+b+c=0 следует a³+b³+c³=3abc.
<span>Возведём обе части равенства </span><span>-с=a+b</span> в куб и раскроем куб суммы: -c³=(a+b)³=a³+b³+3ab(a+b)=a³+b³-3abc. Что и требовалось.
У меня получилось 2 корня
<span>Алгебраическое выражение образуется из чисел и букв с помощью знаков действий и скобок. Например, 2(м+н).</span>