Чем больше угол падения лучей , тем больше угол преломления.
Чем больше угол падения лучей, тем больше нагревается воздух.
25^2=9x^2+16x^2
x=5,-5(не уд.усл)
периметр=3x+4x+25=15+20+25=60
Искомое расстояние между скрещивающимися прямыми (ребро ВВ1 и диагональ АС1 - скрещивающиеся прямые, так как "если две
прямые не лежат в одной плоскости не параллельны одна другой
и не пересекаются, они называются скрещивающимися") это
"расстояние между одной из скрещивающихся прямых и
параллельной ей плоскостью, проходящей через другую прямую".
То есть это перпендикуляр, опущенный из точки, принадлежащей прямой ВВ1, на плоскость, содержащую прямую АС1, - на плоскость АА1С1С. Это перпендикуляры МК или ВН.
В прямоугольном треугольнике АСС1 по Пифагору найдем катет АС. АС=√(АС1²-СС1²) = √(24²-(12√2)²) =√(576-288) = 12√2.
Пусть катет АВ = 6√6 (дано).
В прямоугольном треугольнике АВС по Пифагору найдем второй катет.
Он равен √(АС²-АВ²) = √((12√2)²-(6√6)²) =√(288-216) = √72=6√2.
Тогда по свойству высоты из прямого угла находим высоту ВН.
ВН=АВ*ВС/АС = (6√6)*(6√2)/12√2 = 3√6.
Ответ: <span>расстояние между диагональю АС1 и противоположным боковым ребром ВВ1 призмы равно 3√6.</span>
Сечение пирамиды, параллельное ее основанию, <u>отсекает от нее подобную фигуру.
</u>Все линейные размеры этих пирамид равны отношению высоты исходной пирамиды к высоте отсеченной, т.е. k=8:3.
Основания пирамид подобны.
<span><em>Площади подобных фигур относятся как квадрат коэффициента подобия,</em> т.е.
k²=64/9
</span>Пусть площадь основания исходной пирамид будет S , площадь основания отсеченной- s.
Тогда S:s=64:9
S:27=64:9
<span>S=64*27:9=192 см²
</span>Формула объема пирамиды
V=S*H:3
<span>V=192*8:3=512 см<span>³</span></span>