1. AOB=180*-23*=167*
AOD=BOC=23*(вертикальние)
COD=180*-23*=167*
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ:
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
Ответ: 60°, 60°, 120°, 120°
А- большее основание, б - меньшее. Так как трапеция равнобедренная, то меньший отрезок между высотой опущенной на а и ее вершиной равен (а-б)/2.
Так как угол при основании равен 45, то этот отрезок так же равен высоте(в).
(а-б)/2=в
(а-8)=2*4
а-8=8
а=16
Радиус окружности R = d/2 = 104/2 = 52 см
OC⊥AB, ∠OBC = 30° по условию
ΔOCB - прямоугольный, катет OC лежит против угла 30° ⇒
OC = 1/2 R = 1/2 * 52 = 26 см
Ответ: 26 см