№1 .треугольник МРЕ подобен треугольнику МНК по двум равным углам (уголМ-общий, уголМЕР=уголМКН как соответственные, МР/МН=МЕ/МК, 8/12=6/МК, МК=12*6/8=9, МР/МН=РЕ/НК=8/12=3/4, площади подобных треугольников относятся как квадрат отношения сторон, площадь МЕР/площадьМНК=МР/МН в квадрате)=(3/4) в квадрате=9/16 №2 треугольник АВС подобен треугольнику МНК по второму признаку по двум пропорцианальным сторонам и равному углу между ними (уголВ=угоН=70), МН/АВ=6/12=1/2, НК/ЕС=9/18=1/2 отношения сторон равны треугольники подобны, напротив подобных сторон лежат равные углы, уголК=уголС=60, МН/АВ=МК/АС, 6/12=7/АС, АС=12*7/6=14, №3 треугольник АОС подобен треугольнику ВОД по двум равным углам (уголАСО=уголВДО, уголАОС=уголВОД как вертикальные), АО/ОВ=2/3, периметры подобных треугольников относятся как подобные стороны, АО/ОВ=периметрАОС/периметрВОД, 2/3=периметрАОС/21, периметрАОС=21*2/3=14 №4трапеция АВСД, АД=10, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголВСО=уголОАД как внутренние разносторонние), площади подобных треугольников относятся как квадраты подобных сторон, площадь ВОС/площадь АОД=ВС в квадрате/АД в квадрате, 8/32=ВС в квадрате/100, ВС в квадрате=100*8/32=25, ВС=5
<span>Опустим две высоты ВМ и СК к нижнему основанию АД.Тогда отрезок МК=ВС=4. Маленькие отрезки АМ=КД=1(т.к. АД=6) Мы можем найти высоты по теореме Пифагора: ВМ^2=5^2-1^2=24; ВМ=СК= корень из 24 или 2 умножить на корень из 6. Рассмотрим треугольник АСК он прямоугольный, в нем АК=5 и СК=2√6. Можем найти по т. Пифагора АС^2=5^2+ (2√6)^2=49 ; АС=7</span>
Диагонали пересекаются под прямым углом и точкой пересечения делятся пополам
Ромб разрезается диагоналями на 4 одинаковых прямоугольных треугольника с катетами 7 и 24. Гипотенузу найдем по теореме пифагора
Корень из (49+576) = Корень из (625) = 25
Ответ: Сторона ромба 25
1. Диагонали ромба делят его углы пополам. Значит
<A=2*<BAO=2*50=100°
Поскольку противоположные углы ромба равны, то <C=<A=100°
Находим оставшиеся равные между собой углы Е и В:
<B=<E=(360-(<A+<C)):2=(360-200):2=80°
2. Рассмотрим треуг-ик АОВ. Поскольку у прямоугольника все углы прямые, найдем угол ВАО:
<BAO=90-40=50°
Диагонали прямоугольника равны и точкой пересечения делятся пополам. Т.е. ВО=АО, и треуг-ик АОВ - равнобедренный. Значит, углы при его основании ВАО и АВО равны:
<BAO=<АВО=50°
Находим угол АОВ при вершине треуг-ка:
<AOB=180-(<BAO+<ABO)=180-100=80°
3. Диагонали прямоугольника равны. Это его особое свойство. ВЕ=АС.
Поскольку прямоугольник является параллелограммом, то он обладает и всеми его свойствами. В частности, диагонали параллелограмма точкой пересечения делятся пополам. Значит
ВО=СО=ЕО=АО
<span>По условию диагонали прямоугольника перпендикулярны. Значит имеется четыре прямоугольных треугольника, у которых катеты ВО, СО, ЕО и АО равны. Используем один из признаков равенства прямоугольных треугольников: если катеты одного прямоугольного треуг-ка соответственно равны катетам другого, то такие треугольники равны. Значит, треуг-ки ВОС, СОЕ, АОЕ и АОВ равны между собой. У равных треугольников равными окажутся и их стороны ВС, СЕ, АЕ и АВ. Прямоугольник, у которого все стороны равны - квадрат. </span>