1.Т.к DB перпендикулярно плоскости (Abc), то оно перпендикулярно всем прямым лежащим в этой плоскости,значит DB перпендикулярно AC, AM перпендикулярно BM, значит АС перпендикулярно плоскости (BDM)
2.По теорема известно, что если 2 пересекающиеся прямые плоскости перпендикулярны какой-либо прямой, то все прямые этой плоскости(и сама плоскость) перпендикулярно прямой.
3.Все по той же теореме, что и во 2 задаче.
4.тоже самое, что и в 1 задаче
5.Опять по теореме из 3 задачи
6.из 1 задачи
Задача 1. Найдём АВ, т.к. гипотенуза АВС:
АС²+ВС²=АВ²
АВ=√АС²+ВС²
АВ=√4+9=√13
Ищем АД по той же схеме:
АД=√6²+(√13)²=√36+13=√49=7
Задача 2. Находим АС по АС=√АВ²-ВС²=√64-36=√28
АС у нас гипотенуза треугольника АСД, поэтому АД=√(√28)²-(√21)²=√28-21=√7
Кажись, вот так.
Раз есть гипотенуза, значит треугольник - прямоугольный
Если катет - а см, то 2а²=10²
а²=50
а=√50=5√2
S = a²/2 = 25 (cm²)
6 и 9 см. 27=1/2*Х*1,5Х. х=6, а вторая диагональ 1,5*6=9