Обозначим прямоугольник АВСД и точку пересечения диагоналей О.
Прямой угол разделён в отношении 3 : 6, в градусах это (90 /(3+6))*3 = 30° и второй угол 90-30 = 60°.
Пусть угол 30° - это угол САД, а 60° - ВАС.
По свойству диагоналей прямоугольника угол ВАС равен углу АВД.
Отсюда угол АОВ и есть угол между диагоналями и он равен 180-60-60 = 60°.
Раз 1 угол равен 85 градусов значит 2 угол будет равен ему т.к это верктикальные углы 3 и 4 тоже равны а сумма всех углов равна 360 градусам . обозначим 3 угло за х. Получаем уравнение: х/х/85/85-360, 2х-360-170,2х - 190 ,х-95 Ответ 85,95,95,
по т.Пифагора найдем вторую сторону прямоугольника
ВС=√169-25=12
площадь равна 12*5=60
периметр=(12+5)*2=34
В плоскости основания точкой, равноудалённой от вершин треугольника является центр описанной окружности. Восстановленный из этой точки перпендикуляр к плоскости основания будет местом точек, равноудалённых от вершин треугольника.
Исходный треугольник прямоугольный, его гипотенуза
с² = a² + b² = 24² + 18² = 576 + 324 = 900
c = √900 = 30 дм
Гипотенуза является диаметром описанной окружности.
А₁С₁ = 30 дм
А₁О₁ = А₁С₁/2 = 15 дм
АТ = 25 дм
высоту исходной пирамиды h = О₁Т найдём по теореме Пифагора
О₁Т² + А₁О₁² = АТ²
h² + 15² = 25²
h² = 625-225 = 400
h = 20 дм
Объём полной пирамиды А₁Б₁С₁Т найдём, высчислив площадь основания как половину произведения катетов. Высота пирамиды тоже известна.
V(А₁Б₁С₁Т) = 1/3*S(А₁Б₁С₁)*h = 1/3*1/2*24*18*20 = 8*9*20 = 1440 дм³
Все размеры срезаемой верхней части пирамиды в 2 раза меньше размеров исходной пирамиды, т.к. отрезки между середин рёбер являются средними линиями соответствующих треугольников
А₂Т = А₁Т/2
Б₂Т = Б₁Т/2
т.е. коэффициент подобия
k = 1/2.
При этом площади тел относятся как k², а объёмы как k³
Объём срезаемой части пирамиды
V(А₂Б₂С₂Т) = k³*V(А₁Б₁С₁Т) = 1/8*1440 =180 дм³
И объём усечённой пирамиды
V = V(А₁Б₁С₁Т) - V(А₂Б₂С₂Т) = 1440 - 180 = 1260 дм³
Сторона, лежащая напротив угла 30 градусов равно половине гипотенузы, поэтому AB=10 см
угол ACB мы находим вычитая из 90 градусов 30 (это сумма острых углов прямоугольного треугольника)