DBP=60=ABN как вертикальные
NA=BA(за условием)
NA+BA=180-60=120 градусов
NA=BA=120/2=60 градусов
АВ равняется СД = 9 см. Диагонали прямоугольника в точке пересечения делятся пополам и все 4 отрезка равны между собой, так как диагонали равны. Значит ОС=ОД=8 см. Тогда периметр Р=8+8+9=25 см.
Не забудь отметить как лучшие пожалуйста!!!!!!!!!!!!!На самом деле это очень легко
Соединяем точки А₁, С₁ и К, так как они попарно лежат в одной грани.
А₁С₁ = 10√2 как диагональ квадрата.
ΔА₁D₁K: по теореме Пифагора
А₁К = √(A₁D₁² + D₁K²) = √(10² + 5²) = √125 = 5√5
ΔA₁D₁K = ΔC₁D₁K по двум катетам (A₁D₁ = C₁D₁ как ребра куба, D₁K - общий), значит А₁К = С₁К = 5√5
Рa₁c₁k = 10√2 + 5√5 + 5√5 = 10√2 + 10√5 = 10(√2 + √5).
КО - медиана и высота равнобедренного треугольника А₁С₁К.
По теореме Пифагора:
КО = √(А₁К² - А₁О²) = √(125 - (5√2)²) = √(125 - 50) = √75 = 5√3
Sa₁c₁k = 1/2 · A₁C₁ ·KO = 1/2 · 10√2 · 5√3 = 25√6
cosr = RS/RT
находим гипотенузу
cos 30 = 10/RT
RT = 10*2/ корень из 3 = 20 * корень из 3 / 3
По теореме Пифагора находим катет ST
ST^2 = (20 * корень из 3 / 3)^2 - 10^2
ST^2 = 1200/9 - 100 = 300/9
ST = корень из (100/3)
ST = 10кореней из 3 / 3