1. по клеткам определяем длины катетов: 4 и 3
2. по Пифагору ищем гипотенузу: 5
3. медиана, опущенная на гипотенузу равна ее половине: 5/2 = 2,5
отв: 2,5
В прямоугольном треугольнике против угла 30 градусов лежит катет, равный половине гипотенузы. В нашем случае это угол параллелограмма, лежащий против диагонали, которая является высотой <span>и равна половине неперпендикулярной к ней стороны. В параллелограмме противоположные углы равны, а углы, прилежащие к одной стороне в сумме равны 180 градусов.</span>
Значит углы параллелограмма равны А=С=30градусов, В=Д=150градусов
<span>Первый признак равенства треугольников.</span>
<span>Все помнят первый признак равенства тр-ков - по 2-м сторонам и углу между ними.</span>
<span>Надеюсь, помнят и его доказательство: </span>
<span>Имеем тр-ки АВС и А`В`С`, у которых АС = А`С`, АВ = А`В` и угол ВАС = углу В`А`С`</span>
<span>Совмещаем отрезок АС с А`С`, при этом угол ВАС совместится с В`А`С` и прямая АВ совместится с А`В`. Поэтому точка В совместится с точкой В` из-за АВ = А`В` и тр-к АВС совместится с А`В`С`, то есть эти тр-ки конгруэнтны (по рабоче-крестьянскому - равны).</span>
<span>До сих пор кажется, что всё ОК.</span>
<span>А теперь сюрприз.</span>
<span>Пусть у нас равнобедренная трапеция АВСД с равными боковыми сторонами АВ и СД.</span>
<span>Треугольники АВД и АСД, как объясняют в школе равны по 1-му признаку равенства треугольников.</span>
<span>А теперь забудем о трапеции. Как доказать, что треугольники АВД и АСД равны если известно, что АВ=СД, угол ВАД = углу СДА, а сторона АД у них общая?</span>
<span>Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.</span>
Решение на приложенных изображениях
внешний угол этого многоугольника равен a ,т.к. а=360/n и внешний угол так же 360/n, то они равны.