Ну по моему сугубо личному мнению они имеют целую прямую центров симметрии, т.е. бесконечно много
Пусть ΔABC с основанием AC=12дм и ∠B=120° - осевое сечение конуса. Так как треугольник равнобедренный, то ∠A=∠C=(180-120):2=30°.
Проведем высоту BH. AH=HC=12/2=6 дм - радиус основания конуса
Ответ:
18,84см
Объяснение:
270° составляют 3/4 от 360°
Поэтому длина дуги будет равна 3/4 длины окружности
L = 3C/4 = 3 · 2π · R : 4 = 1.5πR = 1.5 · 3.14 · 4 = 18,84(cм)
Дано: правильная четырехугольная призма, =>
основание призмы - квадрат
S квадрата = а², а - сторона квадрата
D=25 см
H=15 см
1. прямоугольный треугольник:
гипотенуза D=25 см - диагональ правильной четырехугольной призмы
катет Н = 15 см - высота правильной четырехугольной призмы
катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
D²=H²+d²
25²=15²+d², d²=25²-15², d²=625-225. d²=400
2. прямоугольный треугольник:
катет а= катету b
гипотенуза d (диагональ квадрата)
по теореме Пифагора:
a²+a³=d³, 2a²=d²
2a²=400
a²=200, => S квадрата =200 см²
ответ:
площадь основания правильной четырехугольной призмы =200 см²