Првпоовпывоьбвпефыупкась бсмролвлсчьбол
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
для угла 150° смежный угол 30°
если провести перпендикуляр еще и из вершины А,
получим подобные прямоугольные треугольники (угол В-общий)
Катет против угла в 30° равен половине гипотенузы (=0.5)
1. так как АВС равнобедренный, то мы на рисунке отмечаем, что углы А и С равны
2. чертим внутри АВС треугольник РВQ.
3. что бы доказать равнобедренность треугольника РВQ надо узнать, что равны стороны ВР и ВQ. для этого доказываем равенство треугольников АВР и СВQ.
.... АВ=СВ (АВС равнобедренный)
.... угол А=углу С (АВС равнобедренный)
....АР=СQ по условию.
исходя из этого мы получаем, что эти 2 треугольника равны, следовательно стороны ВР и QB равны, что говорит о том, что РВQ равнобедренный
В треугольнике DEM опустим перпендикуляр MN к DE. Пусть DN=x, тогда NE=(18-x). Пусть MN=y. По теореме Пифагора для треугольников DMN и MNE имеем:
x^2+y^2=16^2 (1)
(18-x)^2+y^2=20^2 (2)
Вычтем уравнение (1) из уравнения (2).
Получим: (18-x)^2-x^2=20^2-16^2
(18-x-x)*(18-x+x)=144
18-2х=8, х=5 см,
у^2=231, y=√231 см.
В треугольнике DEС опустим перпендикуляр СК (высота, она же медиана, она же биссектриса) к DE. Очевидно, что DK=KE=9 см, СК=18*√3/2=9*√3 см. KN=9-5=4 см.
Расстояние между точками С и М равно √СК^2+KN^2+MN^2)=√(243+16+231)=√490=7*√10 см.