Пусть АВСА₁В₁С₁ - правильная треугольная призма, Н=АА₁=ВВ₁=СС₁=2м - высота призмы.
Сечение площадь которого необходимо найти проходит через т. Д - середину ВС, через АА₁, сследовательно, оно проходит и через т.Д₁ - середину В₁С₁. Причем ДД₁=Н=2м. , АД=А₁Д₁ - высоты, медианы и биссектрисы оснований АВС и А₁В₁С₁.
Таким образом, площадь искомого сечения - площадь прямоугольника АА₁Д₁Д.
S= АА₁·АД.
АД - высота треугольника АВС, найдем АМ из треугоьника АВД(прямой угол - угол АДВ):
АД=АВ·sin 60⁰=2√3·√3/2=3(м)
S= АА₁·АД=2·3=6м².
Ответ 6м²