найдем сторону основания
пусть она =2х
высота в правильном треугольники является медианой
х²+15²=4х²
225=3х²
х²=75
х=5√3
Площадь основания = 0,5*(5√3)² sin 60=0.5*75*√3/2=18.75√3
Периметр основания = 15√3
Радиус вписанной окружности=а/2√3=5√3/2√3=2,5
Апофема= √(2,5²+12²)=0,5√601
Площадь боковой поверхности= 0,5*Р*L=0.5*15√3*0.5√601=3.75*√1803
Площадь полной поверхности = 18,75√3+3,75√1803≈32,48+159,23≈191,71
(7 + 6 ) * 2 = 26 частей составляют все стороны
104 \ 36 = 4 см приходится на одну часть
4 * 7 + 28см - это стороны ВС и АД
4 * 6 = 24 см - это стороны АВ и СД
Площадь треугольника можно найти: половина произведения двух сторон на синус угла между ними, то есть в данной задаче:
Ответ: S=50
Отрезок соединяет середины сторон треугольника, от сюда длина образующей
в два раза больше 17*2=34
R^2=34^2-16^2=1156-256=900
R=30
Чтобы построить проекцию катета на гипотенузу, нужно опустить перпендикуляр на гипотенузу из вершины прямого угла...
в этом случае всегда получаются подобные треугольники (с равными углами, три пары таких треугольников, все прямоугольные)))
далее потребуется основное тригонометрическое тождество (его изучают в 8 классе, хотя все остальные выводы для 8 класса меньше свойственны, хотя, 8 классы тоже бывают разные)))
для углов, меньших 90° с увеличением угла и синус возрастает (вот этот вывод уже больше для 10-классников, но по условию нужно определить какой угол меньше... можно сравнить катеты))
получился угол примерно равный 38°