Сумма смежных углов в параллелограмме равна 180; Пусть меньший угол будет х гр, то больший х+120
х+х+120=180
2х=60
х=30
Значит, меньший угол равен 30 гр, то больший 150
Пусть в одной части х см, то
х+х+5х+5х=60
12х=60
х=5
т.е. стороны параллелограмма равны 5 и 25
Начертим высоту BH и получим треугольник ABH, с гипотенузой 5;
Катет, лежащий напротив угла в 30 гр, равен половине гипотенузы, т.е. BH=5/2=2.5
то S=25*2.5=62.5 см^2
Построй цилиндр, ось цилиндра, образующую: через эту образующую проводишь осевое сечение через ось цилиндра(само название осевое), следующая через ось не проходит.
Пусть Н- высота х-ширина.
S сеч=Sпрям
т,к S меньшего основания-Q, следовательно Q=h*x
треуг. АДМ- прямоугольный. угол альфа (между сечениями)=60*
cos60*=x/2r(x=r)
1/2=x/2r
x=2r*1/2
x=r
S1сеч=x*h=Q x*h=Q
S2 сеч=2r*h
S2сеч=2x*h
s2сеч=2Q(осевое сечение)
Ребят, решение верное с ответом сошлось. Мы молодцы. Успехов!!!
Стоим ромб АВСД. Диагонали ромба АС и ВД и они пересекаються в т. О. В соответствии с условием угол АВО обозначим как 4*х, а угол ВАО обозначим как 5*х.
Рассмотрим треугольник АВО - он прямоугольный (угол О = 90 град, так как диагонали ромба пересекаються под прямым углом). Сумма углов в треугольнике равна 180 градусов. Запишем уравнение 4*х+5*х+90=180. Решим его и получим х=10.
Следовательно угол АВО равен 4*10=40 град, а угол ВАО равен 5*10=50 град.
Переходим к ромбу: угол АВО=углу СВО = 40 град; угол ВАО=углу ДАО = 50 град.
Следовательно углы А и С в трапеции равны по 100 градусов (50*2), а углы В и Д равны по 80 град (40*2).
Проверим правильность решения: сумма всех углов четырехугольника равна 360 градусов. У нас 100+100+80+80=360.
Задача очень упрощается, если на время забыть об условии и просто найти площадь и высоту треугольника к стороне АС = 12. Просто проведем эту высоту ВН = h, и обозначим АН = z; тогда
z^2 + h^2 = 5^2;
(12 - z)^2 + h^2 = 97;
Легко это решить
144 - 24*z + z^2 + h^2 = 97; 144 - 24*z + 25 = 97; z = 3;
Очевидно, что АHВ - "египетский" треугольник, АВ = 5, АH = 3, ВH = h = 4;
Площадь АВС Sabc = 12*4/2 = 24; всё это пригодится.
Теперь заметим, что треугольник BNP подобен ABC. Ясно, что их высоты пропорциональны сторонам. Обозначим NP = PQ = MQ = NM = x; высота АВС h = 4; высота BNP равна 4 - х;получаем
(4 - x)/x = 4/12; x = 3; x^2 = 9 - это площадь квадрата. А отношение площадей квадрата и треугольника АВС равно 9/24 = 3/8;
Те, кто составлял задачу, наверняка предполагали, что решение пойдет в "обратном" порядке, то есть сначала доля площади квадрата от площади АВС будет выражена через x, потом х будет выражен через h, и только потом будет вычислена h. После чего вся эта "английская сказка" будет прочитана в обратном порядке :)) После некоторого размышления я пришел к выводу, что проще сразу начать с конца :))
Sосн.=3,14•3^2=28,26. Sбок.=пRL, S бок. =3,14•3•4=37,68. Sполн.=37,68+28,26=65,94