Т.к AB-касательнаа то OBперпендикулярна AB. и угол ОВА=90 градусов и треугольник АОВ- п/у.
если АО=7см , а ОВ=3,5см ,получается что ОВ катет лежащий против угла в 30 градусов. и равен 1/2 АО.
треугольник АОВ=уголА+ угол В + угол О=180градусов
треугольник АОВ=30 градусов + 90 градусов + угол О.
угол О =180 градусов - 120 градусов=60градусов
Ответ: угол АОВ=60градусов.
Опустим перпендикуляр из на плоскость АВС. Он в правильном треугольнике при равноудалённой S в центр вписанной и описанной окружности О. Проведём апофему SД из точки S на сторону АС до пересечения в точке Д. По формуле r=корень из3*а/6=корень из3*6/6=корень из 3(радиус вписанной окружности= ДО). Тогда высота SО=корень из(SДквадрат-ДОквадрат)=корень из(39-3)=6. По формуле R=корень из3*а/3=корень из3*6/3=2корня из 3(радиус описанной окружности). R=АО. Тангенс искомого угла SАД=tgX=SО/АО=6/ 2 корня из3=корень из 3. Следовательно угол=60.
Получается фигура в виде квадрата 9х9 см со скруглёнными углами R=2.5 см. Площадь этой фигуры можно найти двумя способами:
1) - из площади квадрата 9х9 см вычесть закругляемую часть,
2) - п<span>лощадь этой фигуры представить в виде суммы площадей квадрата 4х4 см, четырёх прямоугольников 2,5х4 см и круга радиусом 2,5 см.
1) </span>
см².
<span> </span>
см².
<span>
2) </span>
см².<span>
</span>
Находим АА1=b*tgα. Теперь ч находим по теореме Пифагора:
х²=а²-(btgα)²⇒x=√(a²-b²tg²α).