Могу дать решение на задачу 3:
Тут всё достаточно просто, вот смотри:
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться<span> 10 см. и 18 см. </span>
1)угол 1 120 гр. угол 2 60
Проведем высоту BH, тогда <AHB=90градусов; Т.к. сумма градусных мер углов треугольника равна 180, то < ABH=180-90-45=45градусов, значит <HAB=<ABH=45градусов, значит треугольник ABH - равнобедренный (AB-основание), тогда AH=BH. По теореме Пифагора: 2BH^2=1600дм, значит BH^2=800дм, значит BH=
дм=20
дм. Для того чтобы найти площадь трапеции, нужна полусумма оснований, но т.к. средняя линия - есть полусумма оснований, то Sabcd=42дм*20
дм=840
дм^2.
Ответ: Sabcd=<span>840
дм^2.</span>
Пусть нижнее (большее) основание равно a; верхнее равно b, а боковые стороны равны c. Поскольку в трапецию вписана окружность, суммы противоположных сторон равны, откуда с=(a+b)/2.
Кроме того, S трапеции равна полусумме оснований на высоту, которая у нас равна двум радиусам ⇒ S=(a+b)R⇒a+b=S/R; c=S/(2R).
Совершив стандартную процедуру - опустив высоты из вершин верхнего основания на нижнее, разбиваем нижнее на три отрезка, средний из которых равен b, а крайние равны (a-b)/2.
Один из таких отрезков вместе с боковой стороной и высотой образуют прямоугольный треугольник, из которого находим нижний катет (я там уже избавился от двойки в знаменателе):
a-b=2√(S^2/(4R^2)-4R^2)=√(S^2-16R^2)/R
Вспомнив a+b=S/R, получаем формулы для a и b:
a=(S+ √(S^2-16R^2))/(2R);
b=(S- √(S^2-16R^2))/(2R)