пусть АВ-х.а АД-у. периметр параллелограмма 2х+2у=24 след.х+у=12.у-х=3 система уравнений сколадываем почленно; у=7.5.следх=4.5
Рассмотрим треугольники АОС и ОДВ. У них:
СО=ОД по условию, уголСОА=углуДОВ как вертикальные, уголАСО=углуОДВ как накрест лежащие для АС II ВД и секущей СД. Следовательно, треугольники равны по II признаку.
Значит, АО=ОВ.
Пусть, ВД=х, тогда АО=х-3 (по условию). А т.к. АО=ОВ, значит и ОВ=х-3
х+х-3+9=22
2х=16
х=8см.
АС=ВД=8см (из равенства треугольников)
Средняя линия L трапеции, в которую вписана окружность радиуса R, равна: L = S/(2R) = 48/(2*3) = 8.
Боковая сторона такой трапеции равна средней линии.
Находим синус острого угла А:
sin A = 6/8 = 3/4.
Угол PON, как взаимно перпендикулярный с углом А, равен ему.
Тогда отрезок PQ равен:
PQ = 2*R*sinA = 2*3*(3/4) =9/2.
Ответ: <span>площадь S четырёхугольника MPNQ равна:
S = (1/2)*6*(9/2) = 27/2 = 13,5.</span>
по теореме Пифагора c²=a²+b²
a²=c²-b²
Составим и решим уравнение
a²=17²-6²
a²=289-36
a²=253
a=±√253
a>0
a=√253