Если в сечении получился квадрат, то хорда (АВ) в основании равна высоте цилиндра, т.е 8 дм. Если соединить центр основания с концами хорды(АВ), то получится равнобедренный треугольник АОВ, где ОА=ОВ=5дм ,АВ=8. Расстояние от оси цилиндра до сечения равно высоте этого треугольника,проведенной к АВ.
Ее находим по теореме Пифагора h=√(5²-4²)=3 дм. Это ответ.
Угол между двумя хордами измеряется полусуммой дуг, на которые опирается.
Соответственно 54+70=124/2=62
Я там ошиблась,
S=61*2=122
S=122
Переверни, а то с компьютера не очень удобно
1. В прямоугольный треугольник вписана окружность (см. рис 1). Проведем радиусы AN и AM к катетам HP и HT соответственно. Как видно из рисунка, образовался квадрат HNAM, для которого отрезок AH является диагональю.
Диагональ квадрата найдем по формуле:
, где d = AH - диагональ квадрата, a - сторона квадрата, которая нам известна (7м).
Ответ: .
2. В окружность вписан равнобедренный треугольник с тупым углом (см рис. 2). Для нахождения радиуса описанной окружности воспользуемся формулой:
, где a, b и c - стороны треугольника, а S - площадь треугольника.
Найдем площадь треугольника:
;
Найдем сторону треугольника AC из ΔHCA (∠H = 90°):
AC = BC, т. к. треугольник равнобедренный.
Найдем радиус окружности:
Ответ: м.