Честно говоря я уже не помню как правильно доказывать, но я попробую..
9) △ROP=△SO₁P₁ - по стороне RP и SP, и по двум углам P и O (Это, кажется, второй признак равенства треугольников)
10) Этот треугольник я вообще без понятия как доказать
11) △KMP=△K₁P₁N - по стороне KN и K₁N, и по углу K
12) △ABC=ACD - по трем сторонам: AB=CD, BC=AD, AC - общее основание (Третий признак равенства треугольников)
13) △ACD=△D₁C₁B - по двум углам С и С₁, D и D₁, и общей стороной AC и CB (Второй признак)
14) △RPQ=△R₁Q₁S - По двум углам: R=Q₁, R₁=Q и по общей стороне RQ (Второй признак)
15) Тут скорее всего действует второй признак: по двум углам и общей стороной, которая является диагональю в параллелограмме
16) Вот тут я тоже туплю. Я бы сказал что тут может сработать третий признак, т.е. по трем сторонам треугольники равны, но я не уверен в этом
180-(55+80)=? ровно третьему углу ))))))))))))))))))))))))))
Ну это оч. изи
у нас теругольник АВК - равнобедренный, на рисунке ∠DAC = ∠CBD, и ∠KAB = ∠KBC, и тогда эти углы равны, так как половинки их равны (Кстати если тебе надо, то АС - Бисектриса и ВD - тоже)
Т.к. дуги относятся как 6х:5х:7х, то и соответствующие углы В:С:А=6х:5х:7х.
т.к. сумма градусных мер углов треугольника равна 180 градусам, то
6х+5х+7х=180
18х=180
х=10
тогда
В=60
С=50
А=70
Основания-пятиугольники, боковые грани-параллелограммы.