Поскольку AM перпендикулярна пллоскости квадрата, то она перпендикулярна любой прямой, лежащей в этой плоскости. В частности, AM перпендикулярна сторонам квадрата.
Расстоянием от точки M до вершины B есть отрезок MB. Рассмотрим прямоугольный ΔAMB(<MAB = 90° - по сказанному выше). AB = BC = 12 как стороны квадрата, AM = 5. По теореме Пифагора,
MB = √(AM² + AB²) = √(144+25) = √169 = 13. Итак, расстояние от точки M до вершины квадрата B равно 13 см.
Расстояние от точки M до вершины A есть отрезок MA и равно 5 см.
Найдём расстояние от точки M до вершины C(отрезок MC). Для этого проведём диагональ AC квадрата. Тогда по определению, MA перпендикулярна AC, то есть <MAC = 90°. Рассмотрим прямоугольный треугольник MAC, где AC - диагональ квадрата. MA = 5 см. Диагональ квадрата вычисляется по формуле AC = a√2, где a - длина стороны квадрата. AC = 12√2 см. по теореме Пифагора,
MC = √(MA² + AC²) = √(25 + 288) = √313 см - это расстояние от точки M до вершины C.
Ну и аналогично находим расстояние от точки Mдо вершины D. Для этого надо рассмотреть прямоугольный треугольник MAD и по теореме Пифагора найти гипотенузу MD. этот отрезок и является расстоянием от точки M до врешины D. Задача решена.
Если угол равен 38°, то смежный с ним угол будет равен: 180°-38°=142°
Меньший отрезок равен 2 см, пусть больший отрезок равен х см. Тогда, большее основание равно х+2 см; меньшее основание равно х-2 см (трапеция равнобедренная). Средняя линия равна полусумме основании 8=(х+2+х-2)/2; 2х=16; х=8 см; большее основание равно 8+2=10 см; ответ: 10