диагональ перпендикулярна стороне, значит она является высотой провдеенной к єтой стороне
площадь паралелограмма равна произвдению его стороны на высоту, проведенной к этой стороне
S=ah(a)
a=12
h(a)
S=12*13=156 кв.см
Есть два варианта решения:
1) точки на прямой расположены в таком порядке: А В С
АВ = 15см, АС = АВ + ВС = 15 + 4×15 = 60 см
Тогда ВС = 60 - 15 = 45см
2) Точки на прямой расположены так: В А С
Тогда ВС = АВ + АС = 15 + 4×15 = 75см
Решение:
1. Т.к. АВ=АС, то треугольник АВС-равнобедренный. И следовательно угол В равен углу С
2. Т.к АD - высота, то угол ADC=90°
3. Угол DAC=180°-90°-65°=25°
Ответ: 25°
Прямые, о которых говорится в задаче, скрещиваются. Чтобы найти угол между скрещивающимися прямыми, надо перенести их параллельно так, чтобы они пересеклись.
1) Угол CBA=30 градусов ( 90-60 )
По теореме катет лежащий против угла в 30 градусов равен половине гипотенузы.
AB=4·2=8
2)В равнобедренном треугольнике биссектриса, медиана и высота одно и тоже.
Угол A равен углу B и они равны по 45 гр. CD биссектриса, разделила угол пополам. Угол ACD и DBC тоже по 45 гр.
СD=AD=DB⇒ AB=12
Или по теореме медианы в прям.треугольнике. Медиана делит гипотенузу пополам.
3) Пусть угол А это 2x, а угол B x, тогда
x+2x=90 Гр.
3x=90
x=30⇒ угол А 60гр. угол В 30гр.
Катет лежащий против угла в 30гр равен половине гипотенузы.
AC=7
4)Можно пойти по разному. Соотношение сторон вы не проходили.
Ср. линия треугольника равна половине основания.
MP=CB/2=10/2=5
5) BK биссектриса
CBK=KBA=30 градусов
Рассм. прям.треуг. CBK
угол CKB=60? CBK=30
CK=4⇒
Расс. треугол. BKA - он равноб. т.к.
угол KBA=KAB⇒ KB=AK=8
CK+KA=8+4=12