Сторона ромба равна 8, острый угол равен 30o. Найдите радиус вписанной окружности.
Решение
Диаметр вписанной окружности равен высоте ромба, а высота, опущенная из вершины на противоположную сторону, есть катет прямоугольного треугольника, лежащий против угла в 30o<span>. Следовательно, высота ромба равна 4, а искомый радиус равен 2. на эту задачу посмотри и сама реши</span>
<span>Центр описанной сферы находится на равном расстоянии от всех вершин пирамиды. Геометрическим местом точек, равноудалённых от вершин данного треугольника в пространстве, является перпендикуляр к плоскости этого треугольника, проходящий через центр его описанной окружности, который, поскольку треугольник правильный, является по совместительству точкой пересечения медиан, высот, срединных перпендикуляров и биссектрис треугольника, которые для правильного треугольника совпадают. Расстояние от центра правильного треугольника до любой из его вершины равно двум третям его высоты, т.е. 3√3/2*2/3дм=√3дм. Центр описанной сферы должен также находиться на одном и том же расстоянии от двух концов бокового ребра, перпендикулярного основанию. Рассмотрим срединный перпендикуляр для этого ребра, пересекающий указанный выше перпендикуляр к плоскости. Он будет находиться на расстоянии 2дм/2=1дм от плоскости основания, а точка его пересечения с указанным перпендикуляром к плоскости основания есть центр искомой сферы. Следовательно, в прямоугольном треугольнике, образуемым вершиной основания при перпендикулярном ребре, центром основания и центром описанной сферы один катет равен √3дм, второй 1дм, а гипотенуза, равна √(3+1)=√4=2дм - искомый радиус описанной сферы.
Ответ: 2дм.</span>
угоол при основании =34 значит т.к сумма всех углов =180 из 180-34=146 -это внешний угол т.к у равнобедренного треугольника углы при оснавании равны значит 180-(34+34)=112 это верхний угол
Ответ: 112