Нужно построить отрезок АВ, разделить его пополам и через середину отрезка АВ провести прямую (пусть будет а), перпендикулярную этому отрезку АВ до пересечения с прямой с. Эта точка будет равноудалена от А и В, т.к. она лежит на серединном перпендикуляре (по теореме: каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
<u>Основанием высоты</u> правильной треугольной пирамиды <u>является </u>точка пересечения высот (медиан, биссектрис) основания, т.е. <u>центр описанной и вписанной окружностей</u>.
Все ребра и все стороны правильной пирамиды равны.
Обозначим вершины треугольника основания АВС,
высоту пирамиды МО.
СН - высота основания
Соединим НМС в треугольник.
Угол МНО=30°
МС=√13
Пусть сторона основания равна а.
Основание - правильный треугольник, поэтому
СН=а*sin(60°)=а√3):2
ОН=а√3):6 ( радиусу вписанной окружности)
СО=а√3):3 (радиусу описанной окружности)
Высота пирамиды
МО=НО:ctg(30°)=a/6.
Из треугольника МОС по т.Пифагора найдем величину а:
<span>МО²+ОС²=МС²</span><span>(
а/6)²+ (а√3):3)²=13
</span>а²=36
а=6
Высота боковой грани
МН =МО : sin(30°)=2 MO
<span>МО=a/6=1</span>
Отсюда высота боковой грани равна 2
S бок=3*6*2:2=
18 единиц площади
---
[email protected]<span>
</span>
Пусть сторона основания равнобедренного треугольника равна х см, тогда его боковая сторона - 1.2x см. Периметр треугольника равен 20,4 см.
x + 2 * 1.2x = 20.4
x + 2.4x = 20.4
34x = 204
x = 6 см
Сторона основания равна 6 см, а боковые стороны - 6*1.2=7.2 см
Сумма смежных углов равна 180 градусов
Соотношение 5 к 4 - это 9 частей значит на одну часть приходится 180/9=20
значит углы 5*20=100 и 4*20-80