AB=x, BA=-x (противоположно направлены)
Сумма векторов BC и ВА равна вектору ВD, ВD=y+(-x)=y-x BO=1/2BD=(y-x)/2
BP=BC+CP=y+(-x)/2=y-x/2
-PA=AB+BP
-PA=x+y-x/2
-PA=y+x/2
PA=-y-x/2
Треугольник АВС, ВН-высота на АС, ВК - биссектриса
АК/КС=АВ/ВС, АК=х, КС=АС-АК=28-х, х/(28-х) = 26/30, 56х=728, х=13=АК, КС=28-13=15
полупериметрАВС=(АВ+ВС+АС)/2= (26+30+28)/2=42=р
Площадь АВС =корень(р*(р-АВ)*(р-ВС)*(р-АС)) =корень(42*16*12*14)=336
высотаВН=2*площадьАВС/АС=336*2/28=24
площадь КВС =1/2*КС*ВН=15*24/2=180
площадьАВК=площадьАВС-площадьКВС=336-180=156
площадьКВН=площадьКВС-площадьАВК=180-156=24
Ck ∩ ab = l
по теореме Чевы
bp / pc * mc / am * al / lp = 1
bp * al / (pc * lp) = 1
bp / pc = lb / al => по теореме, обратной теореме Фалеса lp || ac
также bk / km = 4 => <span>по теореме Фалеса </span>bl / la = bp / pc = 4
Sabk / Sabm = 4 / 5, тк bk / bm = 4 / 5
Sabk = (4 / 5) Sabm
Δbkp ~ Δbmc по двум сторонам и углу между ними => Sbkp / Sbmc = 16 / 25
Skpcm = Sbmc - Sbkp = Sbmc - (16 / 25) * Sbmc = (9 / 25) Sbmc
Sabm = Sabc, тк BM - медиана =>
Sabk / Skpcm = 4 * 25 / (5 * 9) = 20 / 9
Ответ: 20 / 9.