Точку пересечения диагоналей обозначим через О.
AK=a/5*2=0,4a; KO=a/2-0,4a=0,1a.
Тр-к КОD прямоугольный, т. к. диагонали ромба взаимно перпендикулярны.
По теореме Пифагора: DK^2=KO^2+(b/2)^2=0,01a^2+b^2/4; |DK|=V(a^2/100+b^2/4).
1) 180 градусов
2) высота ; прямоугольных
3) 90 градусов
4)PF; FP
5) TF; FT
6) TF к TN
Пусть в трапеции АВСД основания ВС=а, АД=в, АС и ВД - диагонали, О - точка их пересечения, ВН - высота трапеции, М - точка пересечения высоты ВН и искомого отрезка КЛ.
По условию КЛ параллельна ВС, следовательно ΔАВД подобен ΔКВО, а ΔАВС подобен ΔАКО. Т.к. в подобных треугольниках высоты пропорциональны сторонам, на которые они опущены, то КО/АД=ВМ/ВН, КО/ВС=МН/ВН.
Отсюда КО/АД+КО/ВС=ВМ/ВН+МН/ВН
<span>КО*(ВС+АД)/АД*ВС=(ВМ+МН)/ВН, </span>
т.к. ВМ+МН=ВН, то
КО*(а+в)/ав=1
КО=ав/(а+в)
Аналогично, из подобия ΔДОЛ и ΔДВС, а также Δ ОСЛ и ΔАСД, находим ОЛ:
ОЛ=ав/(а+в)
<span>КЛ=КО+КЛ=ав/(а+в)+ав/(а+в)=2ав/(а+в)</span>