Решение прикреплено...........................
1) А(-5;4) В(3;-2) Найдём координаты вектора АВ( 3-(-5);-2-4)
АВ(8;-6)
IABI=√(8²+(-6)²=√100=10
2) А(-2;7) В(2;1) С(-7;-5)
Найдём координаты и длину вектора АВ :
АВ(4;-6)
IABI=√(4²+(-6)²=√52=2√13
Найдём координаты и длину вектора ВС:
ВС(-9;-6)
IBCI=√(-9)²+(-6)²=√117
cosB=(AB·BC)/IABI·IBCI
cosB=(4·(-9)+(-6)·(-6))/√52·√117=(-36+36)/√52·117=0
угол В=90 град
3) а(-2;3) b(4;-2) а·b=-2·4+3·(-2)=-8-6=-14
4) IaI=12 IbI=7 α=60
a·b=IaI·IbI·cos60=12·7·cos60=12·7·1|2=42
5) M(6;8) К(-2;7)
МК(-2-6;7-8) МК(-8;-1)
IMKI=√((-8)²+(-1)²=√65
6) если векторы перпендикулярны , то их скалярное произведение равно 0
а·b=-5·4+р·(-10)
-20-10р=0
-10р=20
р=-2
а(-5;-2)
7)b(4; -7) а(-14;-8)
IbI=√4²+(-7)²=√16+49=√65
IaI=√((-14)²+(-8)²)=√260
cos(ab)=(a·b)/IaI·IbI
cos(ab)=(-14·4)+(-7)·(-8))/√65·√260=0
cos(ab)=0 , значит угол вежду векторами а и b 90 градусов ( прямой угол ), т. е векторы перпендикулярны
8) а(-2р+3с)-(-4р+2с) р(-1;2) с(2;-3)
а(-2р+4р+3с-2с)=(2р+с)
а(-2(-1;2)+(2;-3) а(4;-7)
IaI=√(4²+(-7)²=√(16+49)=√65
Найдено правильно, а чтобы найти проекцию второго катета нужно квадрат второго катета разделить на гипотенузу(12√3)²:24=144·3:24=18, а можно ещё проще 24-6=18
Сторона основания а = 2*√(6²-Н²)*(√2/2) =√(72-2Н²)
объём призмы V = a²*H = 72H-2H³
<span>наибольший объём призмы равен производной этой функции, приравненной нулю.
</span>V' = 72 - 2*3*H² = 0
H² = 12 H = √12 = 3,464102
Cторона а = √(72-2*12) = √48 = 4√3 = 6,928203
наибольший объём призмы равен V = a²*H = 48*3,464102 = = <span><span>332,5538
</span></span>
Высота делит основание на отрезки 1,4 и 3,4 => основание b равно 4,8 см
Высота, проведенная из вершины равнобедренной трапеции, равна второй высоте, проведенной из другой вершины трапеции и отрезки, на которые они разбивают сторону b тоже равны. => что 3,4 - 1,4 = 2 см основание a
Высота H проведена по прямым углом. 135-90 = 45 градусов угол при стороне прямоугольника. В треугольнике (прямоугольном) образованном высотой известны теперь два угла, посчитаем третий - 180-90-45 = 45 => что треугольник равнобедренный, а высота равна 1,4
По формуле площадь трапеции равна 2+4,8/2 * 1,4 = 4,76 см²