1) Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Площадь круга Sкр = Q = πr² ⇒ r² = Q/π
D1 - меньшая диагональ ромба
D2 - большая диагональ ромба
Радиус круга
r = 0.5D1·sin 75° ⇒ D1 = 2r/sin 75°
r = 0.5D2·sin 15° ⇒ D2 = 2r/sin 15°
Площадь ромба
Sромб = 0,5D1·D2 = 0.5· 2r/sin 75°·2r/sin 15° =
= 4r²/(2sin 75°·sin 15°) = 4r²/(2cos 15°·sin 15°) =
= 4r²/sin 30° = 8r²
Sромб = 8·Q/π
Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.
Дано: \triangle ABC и \triangle A_1B_1C_1, \angle A = \angle A_1 и \angle B = \angle B_1.
Требуется доказать: \triangle ABC \sim \triangle A_1B_1C_1.
Доказательство:
Отложим BK=B_1A_1 и проведем KL||AC; \triangle KBL \sim \triangle ABC (по лемме). По стороне и двум углам \triangle A_1B_1C_1=\triangle KBL (B_1A_1=BK, \angle B_1=\angle B, \angle A_1=\angle A по условию и \angle K=\angle A как соответственные при параллельных прямых KL и AC и секущей AB, поэтому \angle A_1 = \angle K). Отсюда \triangle ABC \sim \triangle A_1B_1C_1
Градусная мера угла АВС дана на рисунке и равна 44 градуса. Градусная меры угла САВ равна 112 - 44 = 68 градусов.
Ответ: 44 градуса и 68 градусов.
Р=(а+в)×2=84. а+в=42
стороны а и в=42-а
S=а×h1=в×h2
составляем уравнение
а×8=(42-а)×10
8×а=420-10×а
18×а=420
а=420:18
а=23 1/3
S=23 1/3×8= 70/3. ×8=560/3=186 2/3