∆MNK-равносторонний, (т.к MN=NK=MK)=>уг М=уг N=уг К=180°:3=60°; МР=РК=13:2=6,5; рассмотрим ∆ РRK-прямоугольный; РК=6,5-это гипотенуза, уг Р=90-угК=90°-60°=30°(т.к в прямоугольном ∆ сумма острых углов=90°)=>RK=6,5:2=3,25(т.к катет лежащий против угла в 30° = половине гипотенузы); NR=NK-RK=13-3,25=9,75
при вращении образуется цилиндр сверху которого находится конус , найдём отдельно площадь цилиндра и только боковую площадь конуса смотри второй рисунок
площадь цилиндра равна S боковое =2πRH=2π*3*6=36πcм^2
найдём только нижнее основание πR^2=9πcм^2
площадь цилиндра равна 45πсм2
найдём площадь конуса S боковое =πRG где G этосторона СВ ,чтобы найти сторону СВ мы из первоначальной трапеции по теореме пифагора найдём СВ это гипотенуза смотри первый рисунок
СВ=5см
S боковое=15πсм2
S фигуры =60 πсм2
центральный угол равен 360/12=30 градусов
внутренний угол равен 180-360/12=180-30=150 градусов
2) Т- середина KL, E - середина KM=>TE - средняя линия => TE=½ML
Аналогично
EF - средняя линия=> EF=½KL
TF - средняя линия=> TF=½KM
ТЕ/ML=EF/KL=TF/KM=1/2 =>
∆ETF~∆KLM, k=½
Периметры подобных треугольников относятся как коэффициент пропорциональности k
P∆ETF / P∆KLM =1/2
P∆ETF = ½P∆KLM = ½*24=12
3) проведем высоту BH=> ∆ВАН прямоугольный. LA=60°=> L B=30° =>
AH=½AB
AB=2AH
AH=(49-15)/2=17
AB=2*17=34
AB=CD=34
P=34*2+49+15=132
3 задача:
Знакома ли тебе такая теорема: "сумма углов треугольника равна 180 градусам"?
Пользуясь этим, решаем задачу.
Угол ОЕС = 180 - 35 - 25 = 120.
Для треугольника АВЕ угол при вершине Е есть и внутренний, а есть и внешний. Угол ОЕС - внешний. Внешний и внутренний угол при одной вершине смежные. Отсюда ответ: угол АЕВ = 180 - 120 = 60.
Опять пользуемся теоремой о сумме углов треугольника.
180 - 60 - 16 = 104 - угол В.
Надеюсь, доходчиво объяснил?