1. Диагональ куба D = a√3, поэтому a = D/√3.
Найдем площадь диагонального сечения. Это прямоугольник, у которого одна сторона равна а, а вторая - диагональ грани, равна a√2.
Площадь сечения S(сеч) = a*a√2 = a^2*√2 = D^2*√2/3
Площадь полной поверхности S(куб) = 6a^2 = 6D^2/3 = 2D^2
Объем куба V(куб) = a^3 = D^3/√27 = D^3*√3/9
Подставляем числа
1) D = 3 м; S(сеч) = 9√2/3 = 3√2 м^2; S(куб) = 2D^2 = 18 м^2;
V(куб) = 27√3/9 = 3√3 м^3
2) D = 6 дм; S(сеч) = 36√2/3 = 18√2 дм^2; S(куб) = 2D^2 = 72 дм^2;
V(куб) = 216√3/9 = 24√3 дм^3
2. Диагональ основания d = a√2.
Половина диагонали d/2, высота пирамиды h и боковое ребро L образуют прямоугольный треугольник. По теореме Пифагора.
L = √((d/2)^2 + h^2) = √(a^2/2 + h^2)
h = √(L^2 - (d/2)^2) = √(L^2 - a^2/2)
Апофема b, боковое ребро L и половина основания a/2 тоже образуют прямоугольный треугольник. По теореме Пифагора
b = √(L^2 - (a/2)^2) = √(4L^2 - a^2)/2
Площадь основания S(осн) = a^2.
Площадь боковой грани
S(гр) = a*b/2 = a/2*√(4L^2 - a^2)/2 = a√(4L^2 - a^2)/4
Площадь боковой поверхности
S(бок) = 4*S(гр) = a√(4L^2 - a^2)
Площадь полной поверхности
S(пир) = S(осн) + S(бок) = a^2 + a√(4L^2 - a^2)
Объем V(пир) = 1/3*a^2*h
Подставляем числа:
1) a = 2 см, h = 4 см, L = √(a^2/2 + h^2) = √(4/2 + 16) = √18 = 3√2 см
S(бок) = 2√(4*18 - 4) = 4√(18 - 1) = 4√17 см^2 ; S(пир) = 4 + 4√17 см^2
V(пир) = 1/3*2^2*4 = 1/3*4*4 = 16/3 см^3
2) a = 6 дм, L = 5 дм, h = √(L^2 - a^2/2) = √(25 - 36/2) = √(25-18) = √7 дм
S(бок) = 6*√(4*25 - 36) = 6*8 = 48 дм^2; S(пир) = 36 + 48 = 84 дм^2
V(пир) = 1/3*6^2*√7 = 1/3*36*√7 = 12√7 дм^3
Пусть а, b и с - стороны треугольника
а = х
b = х+10
c = x-5
P = 47 см
x + x + 10 + x - 5 = 47
3х + 5 = 47
3х = 47 - 5
3х = 42
х = 42 : 3
х = 14
а = 14 см
b = х+10 = 14 + 10 = 24 см
c = x-5 = 14 - 5 = 9 см
Треугольник существует, если сумма двух его сторон больше третьей.
а + с = 14 + 9 = 23 см
b = 24 см
а + с < b ⇒ треугольник не существует
В тр-ке, образованном, высотой конуса, его образующей и радиусом основания, угол между образующей и радиусом обозначим α, его и найдём.
Тангенс альфа равен отношению высоты к радиусу. Радиус равен половине диаметра: R=3√3.
tgα=h/R=18/3√3=6/√3=2√3.
α=arctg(2√3)≈74° - это ответ.
Эм... ну да пренадлежан.
Как бы обозначить
_____М____т____Р вот чертежи которые можешь начертить
____Т____М___Р
1) да
2) Я тебе сделала чертёж
3) я не знаю, нифига не поняла