Если действительно надо найти ВЕ, то зная, что АЕ - медиана, которая по определению делит сторону ВС пополам, имеем:ВЕ=ЕС=28,5см. Это ответ.
Но для чего нам даны стороны АВ и АС?
Скорее всего, в задаче требовалось найти медиану АЕ.
Тогда, зная, что медиана делит треугольник на два РАВНОВЕЛИКИХ, мы можем найти медиану АЕ через равенство площадей треугольников АВЕ и АСЕ, которые находим по формуле Герона: S=√[p(p-a)(p-b)(p-c)].
В нашем случае, для треугольника АВЕ полупериметр равен р=(78,2+АЕ)/2.
Для треугольника АСЕ полупериметр равен р=(68,7+АЕ)/2.
Тогда, освободившись от корня, имеем:
Sabe²=((78,2+АЕ)/2)*((78,2-АЕ)/2)*((АЕ-21,2)/2)((АЕ+21,2)/2)=
(78,2²-АЕ²)*(АЕ²-21,2²)/16.
Sace²=((68,7+АЕ)/2)*((68,7-АЕ)/2)*((АЕ-11,7)/2)((АЕ+11,7)/2)=
(68,7²-АЕ²)*(АЕ²-11,7²)/16.
Sabe²=Sace². Пусть АЕ²=х. тогда
(78,2²-х)*(х-21,2²)=(68,7²-х)*(х-11,7²)
Дальше сплошная арифметика:
78,2²х-х²-78,2²*21,2²+21,2²х=68,7²х-х²-68,7²*11,7²+11,7²х.
х(78,2²+21,2²-68,7²-11,7²)=78,2²*21,2²-68,7²*11,7².
х(9,5*146,9+9,5*32,9)=1657,84²-803,79².
1708,1*х=854,05*2461,63. Отсюда х=1230,815.
Тогда АЕ=√1230,815≈35,08
Ответ: медиана АЕ≈35,1.
8) по признаку СУС
если две стороны и угол между ними одного треугольника, соответственно равен сторонам и углу находящемуся между ними другого треугольника то эти треугольники равны
остальные не видны сори
#1
1)S=a*ha=5*4,6=23
hb=S:b=23:10=2,3
2)S=b*hb=6*4,5=27
a=S:ha=27:3=9
3)a=S:ha=32:4=8
hb=S:b=32:6,4=5
#3
S=ha*a:2=hb*b:2
a=S*2/ah
b=S*2/bh
ah=S*2/a
bh=S*2/b
1)S=15
hb=10
2)S=20
ha=8
3)a=8
b=4
#3
S=(a+b):2*h
h=2S/(a+b)
1)S=24
a=9
h=8