Шар движется со скоростью и в направлении потока воздуха, поэтому ни парус, ни руль никак не повлияют на его движение.
Найдем угол А: 180-120-40=20
ПО ТЕОРЕМЕ СИНУСОВ:
а/sinA = b/sinB
35/0.3420 = b/0.6427
b = 35 * 0.6427 : 0.3420 = 66 см - АС
а/sinA = c/sinC
35/0.3420 = c/0.866
c = 35 * 0.866 : 0.3420 = 89 см - АВ
Смотрим рисунок. У нас вместо точки В, точка D.
Треугольник AOD-равнобедренный (боковые стороны - радиусы). ОК - высота и медиана. По теореме Пифагора АК²=АО²-ОК². АК²=100-64=36. АК=6, значит AD=2AK=12.
Еще раз по теореме Пифагора в треугольнике ACD: H²=CD²=AC²-AD²=169-144=25. Стало быть Н=5.
Основанием четырёхугольной пирамиды SABCD является прямоугольник ABCD, где AB = 2√3, BC = 2√6. Основание высоты пирамиды - это центр прямоугольника. Из вершин А и С опущены перпендикуляры АР и CQ к ребру SB.
1. Докажите, что P - середина отрезка BQ
2. Найдите угол между гранями SBA и SBC, если SD = 6
Боковые ребра пирамиды равны (так как вершина проецируется в центр основания).
Значит АS=BS=CS=DS=6.
Грани - равнобедренные треугольники.
а) Рассмотрим равнобедренный треугольник АSВ. В нем высота SH1, опущенная на основание AB по Пифагору равна SH1=√(SA²-AH1²)= √33.
Соответственно, площадь грани АSB равна Sasb=(1/2)*AB*SH1=√99.
Тогда АМ (высота к боковой стороне BS) равна АP=2Sasb/SB или
АP=2√99/6=√99/3. МВ по Пифагору равно PВ=√(АВ²-АP²) или
PВ=√(12-99/9)=√(9/9)=1.
Точно также в треугольнике ВSC имеем:
SH2=√(36-6)=√30.
Sbsc=(1/2)*BC*SH2=√6*√30=6√5.
CQ=2Sbsc/SC или CQ=2√5. Тогда
BQ=√(BC²-CQ²) или BQ=√(24-20)=√4=2.
Итак, доказано, что BQ=2*BP, то есть точка P - середина BQ.
б) Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и
перпендикулярно ребру провести из неё лучи в каждую из граней.
Возьмем на ребре BS точку Р и проведем из нее в гранях ASB и CSB
перпендикуляры. Один из них нам уже знаком - это отрезок АP. Второй - отрезок РK, который будет параллелен отрезку СQ и равен его половине (так как PK - средняя линия треугольника BQC, поскольку точка P - середина отрезка BQ - доказано выше). По Пифагору АK=√(АВ²+ВK²) или АK=√(12+6)=3√2.
Тогда по теореме косинусов искомый угол АPK равен:
Cosα = (b²+c²-a²)/2bc. Или
Cosα = (АP²+PK²-AK²)/2*АP*PK.
Cosα = (99/9+5-18)/(2*(√99/3)*(√5))=-2/81,97=-0,135.
Мскомый угол равен arccos(-0,135) или α≈97,76°.
Т.к одна из сторон равна половине диагонали, получится равносторонний треугольник AOD, отсуда угол между диагоналями равен 60 градусов