Возьмём формулу расстояния между двумя точками и :
Найдём и
Приравняем их и возведём обе части в квадрат:
УголА=42, уголС=90-12=48, БХ-высота, уголАБХ=90-уголА=90-42=48, ВЛ-биссектриса. уголАБЛ=уголЛБС=90/2=45, уголЛБХ=уголАБХ-уголАБЛ=48-45=3
Из ΔАВС:
∠САВ + ∠СВА = 180° - 82° = 98°
Внешний угол смежный с внутренним, поэтому
∠КАВ = 180° - ∠САВ
∠МВА = 180° - ∠СВА
Сумма внешних углов при вершинах А и В:
∠КАВ + ∠МВА = 360° - (∠САВ + ∠СВА) = 360° - 98° = 262°
Так как АО и ВО биссектрисы,
∠ОАВ + ∠ОВА = 1/2(∠КАВ + ∠МВА) = 1/2 · 262° = 131°
Из ΔОАВ:
∠АОВ = 180° - (∠ОАВ + ∠ОВА) = 180° - 131° = 49°
<span>Вычислите медианы треугольника со сторонами 25см 25см 14см
Подчеркиваю медианЫ.
решение в скане.</span>