Т.к. пирамида правильная, то боковые грани являются равнобедренными треугольниками, SN в треугольнике BSC является и медианой, и высотой
SN-апофема
Sбок=Р·а/2 Р-периметр основания а-апофема
72=Р·6/2 Р=24
в основании лежит правильный треугольник⇒ АВ=Р÷3 АВ=24÷3=8
Мы помним, что угол, вписанный угол измеряется половиной дуги, на которую он опирается, центральный - равен дуге
Следовательно, чтобы найти угол CAD, необходимо найти дугу CD, то есть, 360-(дуга АD + дуга АС )
АС=360-угол АВС*2=360-110*2=140
АD=угол АВD*2=140
CD=360-140-140=80
Угол СAD=40
Ответ:40
См. рис.
Треугольники РСО и ВСА подобны по углу и равному сосотношению двух сторон (угол С общий, РС / ВС = ОС / АС, так как РО || МЕ (так как РОМЕ - квадрат) => РО || АВ, а параллельные прямые PO и AB отсекают на прямых АС и ВС пропорциональные отрезки (Теорема Фалеса), то есть РС / ОС = ВР / АО = ВС / АС => РС * АС = ВС * ОС)
=> АВ / РО = СН / СК
40 см / х см = 24 см / (24 - х) см
40 * (24 - х) = 24х
960 - 40х = 24х
64х = 960
х = 15 (см)
Площадь квадрата равна квадрату его стороны.
Ответ: 225 кв. см
KL, LM, MN, KN - среднии линин треугольников ABC,BCD, ACD, ABD.