#1
1)AB=AC( по условию )
2) AD-общая
3) угл.BAD=угл.CAD ( т.к. AD-биссектриса )
Зн. ^ABD=^ ACD ( по двум сторонам и углу между ними)
#2
1.BD-Высота( по признаку высоты, проведенной к основанию равнобедреннго треугольника)
2. угл.BDC= 90° ( т.к. BD-высота )
3.угл.BAC=180°-угл.1 ( по свойству смежных углов )
угл.ВАС=180°-130°=50°
4.угл.ВАС=угл.ВСА=50° ( как углы при основании равнобедренного треугольника )
Ответ:Угл.ВDС = 90°; угл. ВСА = 50°
#3
[-угол
1. Т.К.[ODB=[OBD ( как углы при основании равнобедренного треугольника ) и [MDB=[KBD( по условию ), то
[ MD0=[KBO.
2Рассмотрим ^ DMO и ^ BKO:
1)[MOD=[KOB ( как вертикальные )
2) DO=OB ( как боковые стороны равнобедренного треугольника )
3) [MDO=[KBO ( из п. 1)
Зн. ^DMO=^BKO ( по стороне и двум прилежащим к ней углам )
3. Т.К. ^DMO=^BKO, то
DM=BK
Что и требовалось доказать.
Диаметр круга радиусом 2 см совпадает с высотой, проведенной из вершины прямогоугла равнобедренного треугольника.Найдите площадь части круга, расположенной вне треугольника.
Сделаю свой рисунок.
Обозначим точки пересечения окружности с треугольником М, К,точку касания с основанием треугольника - D.
<u><em>Соединим все эти точки</em></u>.
Высота треугольника, как медиана прямоугольного треугольника, равна половине основания.
ВD=AD=DC
∆ АDВ= ∆ ВDС.
МК - диаметр окружности и средняя линия ∆ АВС,т.к. проходит через центр окружности.
МК=2 см
АМ=МВ, ВК=КС, МD=DK
МВКD - квадрат, <u><em>диагонали которого равны диаметру окружности 2 см</em></u>.
<em>Площадь квадрата равна половине произведения его диагоналей.</em>
<em></em>
S МВКD=2*2:2=2 см²
<u>S окружности</u> = πr²=4π
Площадь <u><em>четырех сегментов круга вне</em></u> квадрата МВКD равна
S окружности минус S МВКD =4π-2
Площадь сегментов вне треугольника равна половине площади четырех сегментов вне квадрата МВКD и равна:
<em>(4π-2):2=(2π-1 )см²</em>
Помогите решить пж. Геометрия 8 кл найти площадь трапеции