Уравнение окружности имеет вид:
(x - a)² + (y - b)² = R²,
где a и b – координаты центра окружности.
Подставим в уравнение известную точку,
(2 - a)² + (5 - b)² = 25.
Учтём, что центр лежит на биссектрисе угла 1-ой координатной четверти значит, a = b, тогда:
(2 - a)² + (5 - a)² = 25,
отсюда:
а = b = (7-√41)/2 [≈0,3].
Тогда уравнение окружности примет вид:
(x - (7 - √41)/2)² + (y - (7 - √41)/2)² = 25
Ем , не знаю как правильно то написать но короче я : АЕ=АС : 2 = 10 см. : 2= 5 см . в) .
Извиняюсь если не правильно
√41, так как площадь основания четырёхугольник площадью a*b=25, значит сторона основания равна 5. Высота равна 4. Половина стороны призмы 2,5. Образует треугольник со сторонами 2,5 и 4. третья сторона и есть диагональ. По т. Пифагора 2,5^2+4^2=22,25. Диагональ √22,25=4,72 см