А-сторона правильного треугольника
r-радиус вписанного круга (основания цилиндра)
r=а/2tg60=a/2√3=a√3/6
2r-основание осевого сечения и а -высота сечения
Sсеч=2ra=2*a√3/6*a=2a²√3/6
<span>Если квадрат и ромб имеют одинаковые периметры, тто они имеют и одинаковые стороны. Воспользуемся следующей формулой для вычисления площади параллелограмма в случае ромба. В данном случае стороны равны, значит формула упрощается до . Заметим, что Это угол между сторонами ромба. Здесь не имеет значения острый или тупой, так как в обоих случаях будет положительный ответ. Площадь квадрата же всегда равна . Заметим, что синус всегда меняется в данном случае от 0 до 1. То есть только в случае синуса равного 1 (а это квадрат) площадь ромба равна площади квадрата, в остальных случаях площадь ромба всегда меньше площади квадрата. Формулы- S= a*b* sin(a,b). 2 формула.- S= a в квадрате *sin a,
</span>
Дано: окружность R= OC =10 см
хорда BC = 16 см
OA = √37 см
Найти: BA -? и AC -?
ΔOBC образован хордой и двумя радиусами ⇒ равнобедренный
OK - высота и медиана ⇒ BK = KC = 16/2 = 8 см
ΔOKC - прямоугольный. Теорема Пифагора
OK² = R² - KC² = 10² - 8² = 36
ΔOKA - прямоугольный. Теорема Пифагора
AK² = OA² - OK² = (√37)² - 36 = 1; AK = 1
AC = AK + KC = 1 + 8 = 9
AB = BC - AC = 16 - 9 = 7
Ответ: точка А делит хорду на отрезки 9 см и 7 см
Углы ромба равны 70° и 110°
Решение с объяснением находятся на фото