В окружности радиус, которого равен 42 см, вписан правильный шестиугольник. Найдите его периметр.
=============================================================
<h3>Бо'льшие диагонали правильного шестиугольника разбивают её на 6 равных правильных треугольников</h3><h3>Сторона правильного шестиугольника равна радиусу описанной окружности ⇒</h3><h3>Значит, Р = 6•АВ = 6•R = 6•42 = 252 см</h3><h3><u><em>ОТВЕТ: Р = 252 см</em></u></h3><h3><u><em /></u></h3>
Угол АВС опирается на дугу АС, которая равна 2 угла АВС.( дуга АС=2 * 30=60 градусов).
Построим центральный угол АОС и он буде равен дуге АС(60 градусов). Так как стороны треугольника АОС радиусы ( АО=СО=радиус), то угол ОАС= углу ОСА = (180-60)/2=60 градусов. Следовательно треугольник АОС равносторонний, и значит АО=СО=АС=диаметр/2=15/2=7,5см
Ответ: АС=7,5 см.
Например, если 1)<А = 60° (<А=<С(по 1-ому свойству))=> <С=60°.
2)<Д= 180-<А=> 180-60=120°(<Д=<В(по 1-ому свойству))=> <В=120°
Ответ: <А=<С=60°; <В=<Д=120°.