2) 10 см.
Я так в контрольной написал всё правильно
<span>AD=DB; BE=EC; CF=FA </span><span>свойства касательных к окружности
тогда </span>AD=DB=3см; BE=EC=5см; CF=FA=7см
Т.к. OK ║ AD, а AD ║ BC ⇒ OK ║ BC
Точка O - центр пересечения диагоналей параллелограмма делит их пополам ⇒ OK средняя линия ΔBCD.
BC = 2 * OK = 2 * 6 = 12 см
В прямоугольном ΔBCD ∠CBD = 90° - ∠BCD = 90° - 60° = 30°.
Против угла в 30° лежит половина гипотенузы ⇒ CD = BC / 2 = 12 / 2 = 6.
В прямоугольном ΔBCD по теореме Пифагора найдем:
Площадь прямоугольного ΔBCD найдем как полупроизведение катетов:
Т.к. диагональ BD делит параллелограмм на два равных треугольника, то:
Ответ: площадь параллелограмма равна 36√3 см2